3.9.9 \(\int \frac {1}{x^5 (a+b x^4) \sqrt {c+d x^4}} \, dx\) [809]

Optimal. Leaf size=117 \[ -\frac {\sqrt {c+d x^4}}{4 a c x^4}+\frac {(2 b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{4 a^2 c^{3/2}}-\frac {b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 a^2 \sqrt {b c-a d}} \]

[Out]

1/4*(a*d+2*b*c)*arctanh((d*x^4+c)^(1/2)/c^(1/2))/a^2/c^(3/2)-1/2*b^(3/2)*arctanh(b^(1/2)*(d*x^4+c)^(1/2)/(-a*d
+b*c)^(1/2))/a^2/(-a*d+b*c)^(1/2)-1/4*(d*x^4+c)^(1/2)/a/c/x^4

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {457, 105, 162, 65, 214} \begin {gather*} -\frac {b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 a^2 \sqrt {b c-a d}}+\frac {(a d+2 b c) \tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{4 a^2 c^{3/2}}-\frac {\sqrt {c+d x^4}}{4 a c x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^5*(a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

-1/4*Sqrt[c + d*x^4]/(a*c*x^4) + ((2*b*c + a*d)*ArcTanh[Sqrt[c + d*x^4]/Sqrt[c]])/(4*a^2*c^(3/2)) - (b^(3/2)*A
rcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(2*a^2*Sqrt[b*c - a*d])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 105

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] &
& (IntegerQ[n] || IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^5 \left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx &=\frac {1}{4} \text {Subst}\left (\int \frac {1}{x^2 (a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )\\ &=-\frac {\sqrt {c+d x^4}}{4 a c x^4}-\frac {\text {Subst}\left (\int \frac {\frac {1}{2} (2 b c+a d)+\frac {b d x}{2}}{x (a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )}{4 a c}\\ &=-\frac {\sqrt {c+d x^4}}{4 a c x^4}+\frac {b^2 \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )}{4 a^2}-\frac {(2 b c+a d) \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^4\right )}{8 a^2 c}\\ &=-\frac {\sqrt {c+d x^4}}{4 a c x^4}+\frac {b^2 \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^4}\right )}{2 a^2 d}-\frac {(2 b c+a d) \text {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^4}\right )}{4 a^2 c d}\\ &=-\frac {\sqrt {c+d x^4}}{4 a c x^4}+\frac {(2 b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{4 a^2 c^{3/2}}-\frac {b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 a^2 \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.28, size = 109, normalized size = 0.93 \begin {gather*} \frac {-\frac {a \sqrt {c+d x^4}}{c x^4}+\frac {2 b^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {-b c+a d}}\right )}{\sqrt {-b c+a d}}+\frac {(2 b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{c^{3/2}}}{4 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*(a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

(-((a*Sqrt[c + d*x^4])/(c*x^4)) + (2*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[-(b*c) + a*d]])/Sqrt[-(b*c)
 + a*d] + ((2*b*c + a*d)*ArcTanh[Sqrt[c + d*x^4]/Sqrt[c]])/c^(3/2))/(4*a^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(406\) vs. \(2(93)=186\).
time = 0.39, size = 407, normalized size = 3.48

method result size
risch \(-\frac {\sqrt {d \,x^{4}+c}}{4 a c \,x^{4}}+\frac {\ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{4}+c}}{x^{2}}\right ) d}{4 a \,c^{\frac {3}{2}}}+\frac {b \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{4}+c}}{x^{2}}\right )}{2 a^{2} \sqrt {c}}-\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-\frac {a d -b c}{b}}}-\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-\frac {a d -b c}{b}}}\) \(402\)
elliptic \(-\frac {\sqrt {d \,x^{4}+c}}{4 a c \,x^{4}}+\frac {\ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{4}+c}}{x^{2}}\right ) d}{4 a \,c^{\frac {3}{2}}}+\frac {b \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{4}+c}}{x^{2}}\right )}{2 a^{2} \sqrt {c}}-\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-\frac {a d -b c}{b}}}-\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-\frac {a d -b c}{b}}}\) \(402\)
default \(\frac {-\frac {\sqrt {d \,x^{4}+c}}{4 c \,x^{4}}+\frac {d \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{4}+c}}{x^{2}}\right )}{4 c^{\frac {3}{2}}}}{a}+\frac {b \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{4}+c}}{x^{2}}\right )}{2 a^{2} \sqrt {c}}+\frac {b^{2} \left (-\frac {\ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 b \sqrt {-\frac {a d -b c}{b}}}-\frac {\ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 b \sqrt {-\frac {a d -b c}{b}}}\right )}{a^{2}}\) \(407\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(b*x^4+a)/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/a*(-1/4/c/x^4*(d*x^4+c)^(1/2)+1/4*d/c^(3/2)*ln((2*c+2*c^(1/2)*(d*x^4+c)^(1/2))/x^2))+1/2*b/a^2/c^(1/2)*ln((2
*c+2*c^(1/2)*(d*x^4+c)^(1/2))/x^2)+b^2/a^2*(-1/4/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*
(x^2-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x^2-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x^2-1/b*(-a*b)^(
1/2))-(a*d-b*c)/b)^(1/2))/(x^2-1/b*(-a*b)^(1/2)))-1/4/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/
2)/b*(x^2+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x^2+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x^2+1/b*(-a
*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x^2+1/b*(-a*b)^(1/2))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)*sqrt(d*x^4 + c)*x^5), x)

________________________________________________________________________________________

Fricas [A]
time = 3.68, size = 565, normalized size = 4.83 \begin {gather*} \left [\frac {2 \, b c^{2} x^{4} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{4} + 2 \, b c - a d - 2 \, \sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{4} + a}\right ) + {\left (2 \, b c + a d\right )} \sqrt {c} x^{4} \log \left (\frac {d x^{4} + 2 \, \sqrt {d x^{4} + c} \sqrt {c} + 2 \, c}{x^{4}}\right ) - 2 \, \sqrt {d x^{4} + c} a c}{8 \, a^{2} c^{2} x^{4}}, -\frac {4 \, b c^{2} x^{4} \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{4} + b c}\right ) - {\left (2 \, b c + a d\right )} \sqrt {c} x^{4} \log \left (\frac {d x^{4} + 2 \, \sqrt {d x^{4} + c} \sqrt {c} + 2 \, c}{x^{4}}\right ) + 2 \, \sqrt {d x^{4} + c} a c}{8 \, a^{2} c^{2} x^{4}}, \frac {b c^{2} x^{4} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{4} + 2 \, b c - a d - 2 \, \sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{4} + a}\right ) - {\left (2 \, b c + a d\right )} \sqrt {-c} x^{4} \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-c}}{c}\right ) - \sqrt {d x^{4} + c} a c}{4 \, a^{2} c^{2} x^{4}}, -\frac {2 \, b c^{2} x^{4} \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{4} + b c}\right ) + {\left (2 \, b c + a d\right )} \sqrt {-c} x^{4} \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-c}}{c}\right ) + \sqrt {d x^{4} + c} a c}{4 \, a^{2} c^{2} x^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(2*b*c^2*x^4*sqrt(b/(b*c - a*d))*log((b*d*x^4 + 2*b*c - a*d - 2*sqrt(d*x^4 + c)*(b*c - a*d)*sqrt(b/(b*c -
 a*d)))/(b*x^4 + a)) + (2*b*c + a*d)*sqrt(c)*x^4*log((d*x^4 + 2*sqrt(d*x^4 + c)*sqrt(c) + 2*c)/x^4) - 2*sqrt(d
*x^4 + c)*a*c)/(a^2*c^2*x^4), -1/8*(4*b*c^2*x^4*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^4 + c)*(b*c - a*d)*sqrt(
-b/(b*c - a*d))/(b*d*x^4 + b*c)) - (2*b*c + a*d)*sqrt(c)*x^4*log((d*x^4 + 2*sqrt(d*x^4 + c)*sqrt(c) + 2*c)/x^4
) + 2*sqrt(d*x^4 + c)*a*c)/(a^2*c^2*x^4), 1/4*(b*c^2*x^4*sqrt(b/(b*c - a*d))*log((b*d*x^4 + 2*b*c - a*d - 2*sq
rt(d*x^4 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^4 + a)) - (2*b*c + a*d)*sqrt(-c)*x^4*arctan(sqrt(d*x^4 + c
)*sqrt(-c)/c) - sqrt(d*x^4 + c)*a*c)/(a^2*c^2*x^4), -1/4*(2*b*c^2*x^4*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^4
+ c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^4 + b*c)) + (2*b*c + a*d)*sqrt(-c)*x^4*arctan(sqrt(d*x^4 + c)*sqr
t(-c)/c) + sqrt(d*x^4 + c)*a*c)/(a^2*c^2*x^4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{5} \left (a + b x^{4}\right ) \sqrt {c + d x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(b*x**4+a)/(d*x**4+c)**(1/2),x)

[Out]

Integral(1/(x**5*(a + b*x**4)*sqrt(c + d*x**4)), x)

________________________________________________________________________________________

Giac [A]
time = 1.72, size = 104, normalized size = 0.89 \begin {gather*} \frac {b^{2} \arctan \left (\frac {\sqrt {d x^{4} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{2 \, \sqrt {-b^{2} c + a b d} a^{2}} - \frac {{\left (2 \, b c + a d\right )} \arctan \left (\frac {\sqrt {d x^{4} + c}}{\sqrt {-c}}\right )}{4 \, a^{2} \sqrt {-c} c} - \frac {\sqrt {d x^{4} + c}}{4 \, a c x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="giac")

[Out]

1/2*b^2*arctan(sqrt(d*x^4 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a^2) - 1/4*(2*b*c + a*d)*arctan(s
qrt(d*x^4 + c)/sqrt(-c))/(a^2*sqrt(-c)*c) - 1/4*sqrt(d*x^4 + c)/(a*c*x^4)

________________________________________________________________________________________

Mupad [B]
time = 5.35, size = 396, normalized size = 3.38 \begin {gather*} \frac {\ln \left (\sqrt {d\,x^4+c}\,{\left (b^4\,c-a\,b^3\,d\right )}^{3/2}+b^6\,c^2+a^2\,b^4\,d^2-2\,a\,b^5\,c\,d\right )\,\sqrt {b^4\,c-a\,b^3\,d}}{4\,a^3\,d-4\,a^2\,b\,c}-\frac {\ln \left (\sqrt {d\,x^4+c}\,{\left (b^4\,c-a\,b^3\,d\right )}^{3/2}-b^6\,c^2-a^2\,b^4\,d^2+2\,a\,b^5\,c\,d\right )\,\sqrt {b^4\,c-a\,b^3\,d}}{4\,\left (a^3\,d-a^2\,b\,c\right )}-\frac {\sqrt {d\,x^4+c}}{4\,a\,c\,x^4}-\frac {\mathrm {atan}\left (\frac {b^4\,d^4\,\sqrt {d\,x^4+c}\,3{}\mathrm {i}}{16\,\sqrt {c^3}\,\left (\frac {3\,b^4\,d^4}{16\,c}+\frac {5\,a\,b^3\,d^5}{32\,c^2}+\frac {a^2\,b^2\,d^6}{32\,c^3}\right )}+\frac {b^2\,d^6\,\sqrt {d\,x^4+c}\,1{}\mathrm {i}}{32\,\sqrt {c^3}\,\left (\frac {5\,b^3\,d^5}{32\,a}+\frac {b^2\,d^6}{32\,c}+\frac {3\,b^4\,c\,d^4}{16\,a^2}\right )}+\frac {b^3\,d^5\,\sqrt {d\,x^4+c}\,5{}\mathrm {i}}{32\,\sqrt {c^3}\,\left (\frac {3\,b^4\,d^4}{16\,a}+\frac {5\,b^3\,d^5}{32\,c}+\frac {a\,b^2\,d^6}{32\,c^2}\right )}\right )\,\left (a\,d+2\,b\,c\right )\,1{}\mathrm {i}}{4\,a^2\,\sqrt {c^3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^5*(a + b*x^4)*(c + d*x^4)^(1/2)),x)

[Out]

(log((c + d*x^4)^(1/2)*(b^4*c - a*b^3*d)^(3/2) + b^6*c^2 + a^2*b^4*d^2 - 2*a*b^5*c*d)*(b^4*c - a*b^3*d)^(1/2))
/(4*a^3*d - 4*a^2*b*c) - (log((c + d*x^4)^(1/2)*(b^4*c - a*b^3*d)^(3/2) - b^6*c^2 - a^2*b^4*d^2 + 2*a*b^5*c*d)
*(b^4*c - a*b^3*d)^(1/2))/(4*(a^3*d - a^2*b*c)) - (c + d*x^4)^(1/2)/(4*a*c*x^4) - (atan((b^4*d^4*(c + d*x^4)^(
1/2)*3i)/(16*(c^3)^(1/2)*((3*b^4*d^4)/(16*c) + (5*a*b^3*d^5)/(32*c^2) + (a^2*b^2*d^6)/(32*c^3))) + (b^2*d^6*(c
 + d*x^4)^(1/2)*1i)/(32*(c^3)^(1/2)*((5*b^3*d^5)/(32*a) + (b^2*d^6)/(32*c) + (3*b^4*c*d^4)/(16*a^2))) + (b^3*d
^5*(c + d*x^4)^(1/2)*5i)/(32*(c^3)^(1/2)*((3*b^4*d^4)/(16*a) + (5*b^3*d^5)/(32*c) + (a*b^2*d^6)/(32*c^2))))*(a
*d + 2*b*c)*1i)/(4*a^2*(c^3)^(1/2))

________________________________________________________________________________________